
AD-Al65 322 MONITORING AN ADA SOFTUARE DEVELOPMENT(U) MARYLAND UNIV i/1
COLLEGE PARK DEPT OF COMPUTER SCIENCE
V R BASIL! ET AL. APR 84 N88814-82-K-8024

UNCLASSIFIED F/G 9/2 NLEEEEEEEEEE

jj~ 12.8 J _L

_ 22

,%,

1111.25 1-14 111.

MICROCOPY RESOLUTION TEST CHART

NAT ONAL BJFIAL 01 YUANVARV A

*.
i ,,II - A I *.

5~4A4,0 k- 4k5~/7

04 MONITORING AN ADA SOFTWARE DEVELOPMENT

CV) Victor R. Basili John Bailey .7 0
Shih Chang Elizabeth Kruesi

It) John Gannon Sylvia Sheppard
COd Elizabeth Katz ,.U, C) -
I N. Monina Panlilio-Yap

Connie Loggia Ramsey
IMarvin Zelkowitz

University of Maryland General Electric Company*

Ads evolved from a desire within the Department of Defense to have a standard
language for the development of real-time and large scale systems. In addition to pro.
viding features needed by those types of systems, Ads supports structured program-
ming, data abstraction, modularity, and information hiding. Research with these tech-
niques indicates that their use should improve the quality of the software development
process and its product. While, programmers who are most familiar with various assem-
bly languages and FORTRAN may use structured programming, generally they are not
familiar with the other concepts. The problems with training programmers in Ads and
its associated design and programming methods and then redeveloping current systems
in Ada is unknown.

In order to understand the effect of using Ads, the University of Maryland and the
General Electric Company began a joint project. The purpose of the project is to moni-
tor the use of Ada in an industrial software development project. In particular, we
identify areas of success and difficulty in learning and using Ada as both a design and

* coding language. Our results indicate where emphasis should be placed in Ads training
and in the development of tools and techniques for use with Ada. We also identify
metrics used to evaluate and predict the cost, quality, and maintainability of Ada pro-
grams.

Copies of the newsletters may be obtained from Dr. Victor R. Basili, Department of
qComputer Science, University of Maryland, College Park, MD, 20742. Feedback regard-

ing our approach, goals, and results is welcome.

I , * John Bailey and Elizabeth Kruesi are now with Software Metrics, Inc. Sylvia Sheppard is
with Boos, Allen, and Hamilton, Inc.

This research is supported by the Office of Naval Research (ONR) under ONR contract
.' #N00014-92-K-0024 to the University of Maryland with funding from ONR and the Ada Joint

Program Office. Ada is a trademark of the Department of Defense, Ads Joint Program Office.

C This is the third newsletter concerning this project. April 1984.

-." .--

....,:.: ..-.:....-..: .:,...::...:......- :....: , :....-.... ..:.-...:... : :. :,;,,',..,-,. ..,. .,... ,.,--...,, -:-,: . , ,.,-.-_. , ::

Background
Cue Study Organization

This case study is driven by a set of goals that were developed to answer questions
about the Ada language and its use. Setting out with a set of goals, a framework is
developed for establishing why each data item is collected and how it is used to evaluate
the project being studied. This approach minimizes the chance that needed data will
not be collected and permits the interpretation of the data relative to the goals set. The
goals also provide an organization for the data collection process. The approach consists
of six steps:

I) the development and categorization of a set of goals,
2) the development of a set of questions of interest or hypotheses based upon those

goals that attempt to quantify the abstractions of the goals,
3) the development of metrics and data distributions that answer the questions,
4) the development of forms and other mechanisms for collecting the data,
5) the actual data collection process, and
6) the validation and analysis of the data.

.4' [Basili, Weiss 821 contains a detailed discussion of this approach to data collection.
The primary goal of this endeavor, to study an Ads project in order to make

recommendations, was broken down into more specific goals to guide the study. These
goals were divided into four major categories: changes and effort goals, Ada and PDL
goals, data collection goals, and metric goals. Each goal within a category was associ-
ated with a series of questions whose answers might help meet that goal. These ques-
tions did not include every question one might ask, but they were meant to be represen-
tative of the questions of greatest interest. Each question had a list of data sources,
such as forms, static analyzers, or human evaluations, to guide the data collection pro.
cess. The complete list of goals, without the questions, is given in the appendix.

The source of much of the effort and change data was a set of forms that were
developed to gather information about ",.e software development process. Most of these
forms were adapted from the NASA Software Engineering Laboratory [SEL 821. They
were completed by the programming team and validated by the monitoring team before
their entry into an automated database. The preliminary analysis of that data is givenin the subsection "Effort and Change." In addition, several subjective evaluations were

made by various people at various stages of the development. That data has not yet
been analyzed. Finally, a parser, which checks syntax of both the design and code and
takes rudimentary measurements, has processed the final product. The analysis of that
data is in the subsection "Ada Use." The goals and questions directed how this analysis
was done.

Project Development
The project studied involved the redesign and reimplementation of a portion of a

satellite ground control system originally written in FORTRAN. Four programmers
were chosen for then di-rerse backgrounds: the lead programmer/manager knew the
application, FORTRAN, and assembler, the senior programmer also knew other
languages such as COBOL, PL/I, Lisp, ALGOL, and SNOBOL; the junior programmer

A -.

--4ki . ." %..

.,- -. rrv .

had just earned a B.S. in computer science and was was fluent in Pascal and other
block-structured languages; the !ibrarian had only brief exposure to FORTRAN. They
were given a month of training in Ads and the programming practices they were
expected to use: design and code walkthroughs and structured programming. They
practiced using the NYU Ada/Ed interpreter on sample programs and began designing
the system. The design was written using an Ads-like PDL which specifies Ada pack-
ages and subprograms and their interfaces as well as abstract statements for program
functions. Although the PDL is designed to be processable, a processor was not avail-
able at design time. The design evolved into Ada code which was processed by the
Ada/Ed interpreter; however, the entire project could not be interpreted as a unit due
to size constraints with the interpreter. The design and coding phases of the project
extended from March 1982 to January 1983. Some testing of the system was done dur-
ing the summer of 1983 using the ROLM compiler, however, the entire system has not
been tested. In addition, since there was no test plan developed before or during the
project, we cannot evaluate the testing process.

Data Analysis
Effort and Change

Preliminary analysis has been done on the effort, change and fault data. Given the
overall expenditure on the project, relative to most projects, a large amount of time was
spent on training, about 20%. Also, the effort spent on each of requirements and design
was greater than the effort spent on coding. Little time was spent on testing. However,
it must be stressed that the project's development cycle was not completed. As it
became apparent that a full-fledged compiler would not be available for use on this pro-
ject, the programmers' enthusiasm waned. Some low-level procedures were not written,
and very little of the system was more than unit tested. Therefore, the percentage of
time spent on various phases may be misleading.

*While the programmers were given a more extensive training program than might
be considered normal, it should be noted that Ada training costs will most likely be
higher than average and must be considered when planning early developments using
Ada. In addition, many of the concepts incorporated into Ada were not used by the
programmers. For example, even though data abstractions and their use were taught
during the training program, they were not used in the early work and were used in
later coding only after an understanding of the project design and the concepts of data
abstraction were reinforced. Training must be oriented toward the concepts behind Ada
and how they de supported by the language rather than toward the language with
reference to the-concepts. A related study concerning training in Ada is described in the
section "Training Study."

After the training, the project programmers began to design and then code.
Changes were documented from the time that each piece of design was reviewed. The
change report forms show that most changes were design (32%) and code (61%) changes
and that there were few requirements changes (7%). In addition, most of the changes

* were fault corrections (57%) and improvements for clarity, maintainability, and reads-
bility (23%). The need for change was determined in less than an hour for almost all of

..

A. . ..L- . - 4

the changes, and the time to design and implement the change was one hour or less for
almost all of the changes. Since the code was not thoroughly tested, we do not know
whether an even higher percentage of fault correction type changes may be needed.

Analysis of the fault report forms indicates that 72% of the faults entered the sys.
tem during the coding stage and 24% during the design stage. However, since the
design was not machine checked and the programmers did not go back to the design to
determine whether a fault discovered in the code was present in the design, preliminary
visual analysis indicates these percentages are probably closer to 50/50. Most of the
faults were incorrect code (79%) and incorrect design (16%). The majority of the forms
indicated that the use of Ads contributed to the fault and most of these were syntactic
faults. Programmers claimed that the Ads language reference manual or class notes
explained the features clearly in most cases and that they understood the features but
did not apply them correctly. To correct the fault, programmers usually remembered
how the features should be applied or obtained information from another programmer.
Most faults took less than fifteen minutes to isolate and as little time to correct. The
activities used to detect and isolate faults were mainly compilation, design reading,
design walkthrough, code reading, or some combination of these.

The above information seems to indicate that most of the faults discovered were
trivial. Without having done thorough testing, it is impossible to say how many more
serious and change-resistant faults may still exist in the code.

The faults were also classified as language, problem and clerical. Language faults
were those which involved the syntax or semantics of a feature or those which involved
the concept behind a feature. The problem category involved those faults due to a lack
of understanding of the approach or solution domain but not related to the language.
Clerical faults included those due to carelessness, e.g. typographical faults. Eighty-six
percent of the faults were language faults, and furthermore, 69% of these were merely
syntax faults. This explains why so many of the faults took so little time to correct.
Twenty-seven percent of the language faults were semantic faults. Most of the faults
involving requirements were problem faults, and most of the faults involving incorrect
design or code were language-related faults.

Several Ada language features were involved in faults. Most common among these
were low-level syntax (e.g. semicolon, parenthesis, assignment) and loops. There were
also a considerable number of faults involving tasks, separate compilation, generics, pro.
cedures and functions, parameters, and declarations. A smaller number of faults were
related to exceptions, types, packages and several other features. There were only a few
concept faults, and these involved tasking, exceptions and packages. Parameters, gener-
ics and compilation units together accounted for 537 of the semantic faults. These
results suggest that further training in the concepts of Ada, along with a language-based
editor, might eliminate many of the type of faults found in this project.

Ads Use
All of the design and code has been processed. There are 11145 lines of Ada source

(including comments) and 7406 lines of PDL source, some of which evolved into Ada
source. The Ads code consists of 2913 statements (1064 declarations and 1849

,." -4.

,-'. '. , . .*'..- #- .-, .-% - .- -.- - . . ' . , , - -, . -, . - - . .- ," '. •. ° • -. .'.,-. ."..-..- ."..". _..

L

executable statements). There are 50 program units (packages, tasks, or subprogram),
18 of which are packages.

Early design reviews showed that the design was functional rather than object.
oriented. This subjective opinion is supported by an analysis of the packages. Of the
eighteen packages, two were common blocks of definitions, three were libraries of fune-
tions, eleven were encapsulated data types with private types and operations, and the
remaining two had defined types but made the representation of the type visible. Nine
of the packages defining encapsulated types were device drivers, one encapsulated
mathematical functions for different types of data, and the remaining package definition
had no body. Device drivers and math libraries are used in existing software systems.
No new fully encapsulated types were declared. Therefore, the programmers did not
seem to find new abstract data types [Gannon, et al. 831.

One reason for use of a functional design might be that the requirements are
detailed and functionally oriented. It was probably easier for the programmers to design
the system functionally based on those requirements than to abstract back from the
requirements to a level where they could see other design alternatives (Duncan, et &I.
841. In addition, since the programmers had more experience with FORTRAN than any
other language, they may have been constrained by their previous language experience
[Booch 81). Training for alternative design approaches and other software engineering
concepts supported by Ads must come early in development. This training probably
should precede training in the Ada language, since it impacts the early design decisions
and perhaps the requirements analysis phase.

Two of the goals of the project (1.2 and IL.5) relate to the use of the Ads language.
As a first step, we have examined each programmer's use of executable statements. Of
the Ada executable statements (1849), 16% (301) were written by the lead
programmer/manager, 43% (795) by the senior programmer, 36% (671) by the junior
programmer, and 5% (82) by the librarian. Any comparison of language use will prob-
ably not include the librarian because he wrote relatively few executable statements. In
discussing each programmer's use of Ads, we indicate which percentage of each
programmer's executable statements is involved in order to normalize the data.

The librarian was the only team member to use a discernibly limited subset of Ada
executable statements. He used assignments (49%), ifs (20%), returns (16%), loops
(13%), and raised exceptions (2%). This use seems to be appropriate for the subpro-
gram he wrote. The other programmers used almost every type of executable state-
ment. The code statement was probably not appropriate for this application, and they
avoided the goto statement as well. However, the lead and senior programmers used I1
and 20 (3.3% and 2.5%) exit statements respectively. The exit can be considered a res-
tricted goto. Only the senior programmer used the abort statement, and the lead pro-
grammer used 14 (4.7%) pragmas while the junior programmer used 2 (0.3%).

Little distinction between programmers can be made using this data at this level of
analysis. We are investigating more detailed measures of language and data use. We
also will try to develop further measures of the use of Ads concepts such as exception
handling, tasking, and abstraction [Basili, Katz 831. As our analyzer becomes more
sophisticated, we hope to further characterize the use of Ada on this and other projects.

-5.
4d

Training Study
In a related empirical study, we compared two approaches to teaching the Ads

language. The goal was to discover an effective way to teach students the use of Ad& as
a vehicle for applying information hiding and data abstraction to software development.
The fifty-four participants in the study were enrolled in an advanced undergraduate
Ads class at the University of Maryland. Baseline data was gathered on every student,
including programming aptitude scores. The clams was then randomly divided into two
sections. One section was taught the language features first, approximately in the order
that they are presented in the language manual. They were then shown how packages
can be used to encapsulate objects, resources, and types when a system is first designed.
The other section was taught these principles of encapsulation first and used the Ads
package to express designs before the lower-level language features were presented.
Eventually, the same set of lectures was presented to both sections.

We initially hypothesized that the section which learned design first would produce
more modifiable programs. However, the lack of complete, executable examples during
the entire first half of the course appeared to hamper a complete understanding of the

- concepts. Ultimately, the high variability among the students masked any large
differences between the sections. However, some interesting differences in the correla-
tions between background data and the success of the students in each section were
revealed. This experience suggests that the optimal approach would probably involve
tailoring a curriculum to each student's background and experience. However, a combi-
nation of the two approaches, where complete examples are presented with emphasis on
design considerations, might be appropriate even when teaching professional program-
mers.

Conclusions
The Ada language is a medium for supporting certain design concepts. It is impor-

tant that those concepts be taught and motivated, possibly even before the language is
taught. Training should be tailored to the past experience of the programmers. The
programmers on this project had trouble with data abstraction and information hiding
and distinguishing between detail and precision particularly when designing. Only after
the project was complete did they understand the importance of methodology and how
it should be used. Their overall design was more like than unlike a FORTRAN system
design. However, the requirements were already functional.

In this project, the programmers used most of the language features but not necee-
sarily as they were intended by the language designers. There were a large number of
language errors made, and these errors were syntactic, semantic, and conceptual. Most
of the errors involved the more Ada-specific features. Due to the learning curve, we
were unable to judge the impact of Ads on costs, schedules, or milestones. However, it
is clear that many support tools are needed. These tools include a structured editor,
data dictionaries, call structure and compilation dependency tools, cross references, and
other means of obtaining multiple views of the system. In addition, a PDL processor
with interface checks, definition and use relation lists, and metrics would be helpful in
the early stages of development.

z...

-m ~ ~ * ~

Further Research
Some further analysis will be done with this data. The design and code will be stu-

died to determine whether previous experience influences a programmer's use of Ada.
Since the project was not finished and the product not tested fully, we expect few con-
crete results from this data. However, we plan to use this data to aid in the evaluation
of analysis tools we will develop. After building these tools, we plan to look at other
projects developed in Ada for further indications of the effect of Ada. Recommends.
tions will then be made on which metrics are most useful, what aspects of training must
be stressed, and what influence the use of Ada might have on the software development
process. We encourage comments on all aspects of this project and will continue to

.. publish newsletters or papers concerning our results.

References

(Bsili et al. 821
Victor R. Basili, John D. Gannon, Elizabeth E. Katz, Marvin V. Zelkowitz, John
W. Bailey, Elizabeth E. Kruesi, and Sylvia B. Sheppard, "Monitoring an Ada
Software Development Project," Ada Letters U, 1 (July 1982), 1.58-1.

,V':. [Basili, Katz 831
Victor R. Basili and Elizabeth E. Katz, "Metrics of Interest in an Ada Develop-

* ment," IEEE Workshop on Software Engineering Technology Transfer, Miami, FL,
April 1983, pp. 22-29.

.Basili, Weiss 821
Victor R. Basili and David M. Weiss, "A Methodology for Collecting Valid Software

- -Engineering Data," Computer Science, Univ. of Maryland, 1982, UOM-1235.

[Booch 811
Grady Booch, "Describing Software Design in Ada," SIGPLAN Notices, Vol. 16,
No. 9, Sept. 1981, pp. 42-47.

[Duncan, et al. 84]
A. G. Duncan, J. S. Hutchison, J. B. Bailey, T. M. Chapman, A. Fregly, E. E.
Kruesi, T. McDonald, S. B. Sheppard, "Communications System Design Using
Ada," Proc. 7th Intl. Conf. on Software Engineering, Orlando, FL, March 1984, pp.

398-407.

[Gannon, et al. 831

John D. Gannon, Elizabeth E. Katz, and Victor R. Basil, "Characterizing Ads Pro-
grams: Packages," The Measurement of Computer Software Performance, Los
Alamos National Laboratory, August 1983.

[SEL 821
Software Engineering Laboratory, SEL-81-104, The Software Engineering Labors.
tory, NASA Goddard Space Flight Center, February 1982.

Appendix
The purpose of these goals is to direct the study of this Ada project. Complete

copies of the list of goals and questions may be obtained from the authors.

I. Changes and Resources
1.1: Characterize the effort in the project.
1.2: Characterize the changes.
1.3: Characterize the faults.
1.4: Characterize Ads faults.
1.5: Characterize the other faults.
1.6: Characterize the non-error changes.

11. Ada and PDL/Ads
.I: Evaluate the effect of using an Ads-like PDL with respect to the goals of a PDL.

13.2: Determine which subsets of Ada features are used naturally.
11.3: Determine the effect of using an Ada-like PDL when Ads is the language of

implementation.
1.4: Determine how Ada works for this application.
1.5. Characterize the programmers and associate their backgrounds with their use of

Ada.
11.6: Determine whether there are aspects of Ads that contribute positively to the

design and programming environment.
M 1. Data Collction

mIl.l: Evaluate the data collection and validation process.

IV. Metrics
IV.1: Select a set of static metrics for the APSE.
IV.2: Develop a set of size metrics for the APSE.
IV.3: Develop a set of control metrics for the APSE.
IV.A: Develop a set of data metrics for the APSE. i

IV.5: Select a 4et of dynamic metrics for the APSE.
IV.6: Develop, a set of test coverage metrics for the APSE.
IV.7: Develop a set of execution metrics for the APSE.
IV.8: Select a set of software development process metrics for the
IV.0: Determine the effectiveness of the predictive power of certain measures during

development.
IV.10: Develop a subjective evaluation system for evaluation of program and design

characteristics that are not practically or easily measured in other ways.
IV.II: Provide a data base for future Ads projects to be used to predict some proper-

ties of those projects.

k. . , .. " . ,. : .', . -.. ". ,.- , ' , . -. ,,.,, - . .- . -. . , • ' .' , . ., .-. . . •-. ,

4DT I (.l lM~I S ~~~f S~ &r r.. - ~-.-;r-r ~rrv2r-z-yr,-

I LIE

6 , "

.4,f'' 1

